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CHAPTER 17

DESIGN FOR EQUIPMENT VIBRATIONS AND SEISMIC LOADINGS

17-1. Introduction.
a. Vibrations caused by steady state or transient

loads may cause settlement of soils, excessive motions
of foundations or structures, or discomfort or distress to
personnel.  Some basic design factors for dynamic
loading are treated in this section.  Design of a
foundation system incorporates the equipment loading,
subsurface material properties, and geometrical
proportions in some analytical procedure.

b. Figure 17-1 shows some limiting values of
vibration criteria for machines, structures, and personnel.
On this diagram, vibration characteristics are described
in terms of frequency and peak amplitudes of
acceleration, velocity, or displacement.  Values of
frequency constitute the abscissa of the diagram and
peak velocity is the ordinate.  Values of peak
displacement are read along one set of diagonal lines
and labelled in displacement (inches), and peak
acceleration values are read along the other set of
diagonal lines and labelled in various amounts of g, the
acceleration of gravity.  The shaded zones in the upper
right-hand corner indicate possible structural damage to
walls by steady-state vibrations.  For structural safety
during blasting, limit peak velocity to 2.0 inches per
second and peak acceleration to 0.10g for frequencies
exceeding 3 cycles per second.  These limits may
occasionally have to be lowered to avoid being
excessively annoying to people.

c. For equipment vibrations, limiting criteria
consist of a maximum velocity of 1.0 inch per second up
to a frequency of about 30 cycles per second and a peak
acceleration of 0.15g above this frequency.  However,
this upper limit is for safety only, and specific criteria
must be established for each installation.  Usually,
operating limits of equipment are based on velocity
criteria; greater than 0.5 inch per second indicates
extremely rough operation and machinery should be shut
down; up to 0.10 inch per second occurs for smooth,
well-balanced equipment; and less than 0.01 inch per
second represents very smooth operation.

d. Figure 17-1 also includes peak velocity
criteria for reaction of personnel to steady-state
vibrations. Peak velocities greater than 0.1 inch per
second are "troublesome to persons," and peak
velocities of 0.01 inch per second are just "barely
noticeable to persons." It is significant that persons and
machines respond to equivalent levels of vibration.

Furthermore, persons may notice vibrations that are
about 1/100 of the value related to safety of structures.

17-2. Single degree of freedom, damped, forced
systems.

a. Vibrations of foundation-soil systems can
adequately be represented by simple mass-spring-
dashpot systems.  The model for this simple system
consists of a concentrated mass, m, supported by a
linear elastic spring with a spring constant, k, and a
viscous damping unit (dashpot) having a damping
constant, c.  The system is excited by an external force,
e.g., Q = Qo sin (ωt), in which Qo is the amplitude of the
exciting force, ω = 2πfo is the angular frequency (radians
per second) with fo the exciting frequency (cycles per
second), and t is time in seconds.

b. If the model is oriented as shown in the
insert in figure 17-2(a), motions will occur in the vertical
or z direction only, and the system has one degree of
freedom (one coordinate direction (z) is needed to
describe the motion).  The magnitude of dynamic vertical
motion, Az, depends upon the magnitude of the external
excitation, Q, the nature of Qo, the frequency, fo, and the
system parameters m, c, and k.  These parameters are
customarily combined to describe the "natural frequency"
as follows:

1 k
fn = 2π m (17-1)

and the "damping ratio" as
c

D= 2√km (17-2)

c. Figure 17-2(a) shows the dynamic response
of the system when the amplitude of the exciting force,
Qo, is constant.  The abscissa of the diagram is the
dimensionless ratio of exciting frequency, fo, divided by
the natural frequency, fn, in equation (17-1).  The
ordinate is the dynamic magnification factor, Mz, which is
the ratio of Az to the static displacement, Az = (Qo/k).
Different response curves correspond to different values
of D.

d. Figure 17-2(b) is the dynamic response of
the system when the exciting force is generated by a
rotating mass, which develops:

Qo =  me ( e ) 4π2fo
2 (17-3)
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where

me =the total rotating mass
e = the eccentricity
fo = the frequency of oscillation, cycles per

second

e. The ordinate Mz.  (fig 17-2(b)) relates the
dynamic displacement, Az, to me e/m.  The peak value of
the response curve is a function of the damping ratio and
is given by the following expression:

1
Mz(max) or Mz = 2D√1-D2 (17-4)

For small values of D, this expression becomes 1/2D.
These peak values occur at frequency ratios of

fo
fn=√1-D2 (fig. 17-2a)

or (17-5)
fo 1
fn= √1-2D2 (fig. 17-2b)

17-3. Foundations on elastic soils.
a. Foundations on elastic half-space.  For very

small deformations, assume soils to be elastic materials
with properties as noted in paragraph 3-8.  Therefore,
theories describing the behavior of rigid foundations
resting on the surface of a semi-infinite, homogeneous,
isotropic elastic body have been found useful for study of
the response of real footings on soils.  The theoretical
treatment involves a circular foundation of radius,  ro, on
the surface of the ideal half-space.  This foundation has
six degrees of freedom: (1-3) translation in the vertical
(z) or in either of two horizontal (x and y) directions; (4)
torsional (yawing) rotation about the vertical (z) axis; or
(5-6) rocking (pitching) rotation about either of the two
horizontal (x and y) axes.  These vibratory motions are
illustrated in figure 17-3.

(1) A significant parameter in evaluating
the dynamic response in each type of motion is the
inertia reaction of the foundation.  For translation, this is
simply the mass, m = (W/g); whereas in the rotational

(Courtesy) of F.  E Richart, Jr., J R. Hall. Jr., and R. D.
Woods, Vibrations of Soils and Foundations, 1970, p 316.
Reprinted by permission of Prentice-Hall, Inc., Englewood
Cliffs, N. J.)

Figure 17-1.  Response spectra for tibraton limits.
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(Courtesy of F. E. Richart, Jr., J. R. Hall, Jr., and R. D. Woods,
Vibrations of Soils and Foundations,1970, pp 383-384.  Reprinted by
permission of Prentice-Hall, Inc., Englewood Cliffs, N. J.)

Figure 17-2.  Response curves for the single-degree-of-freedom system with viscous damping.

Figure 17-3.  Six modes of vibration for a foundation.
U. S. Army Corps of Engineers

Figure 17-3.  Six modes of vibration for a foundation.
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modes of vibration, it is represented by the mass
moment of inertia about the axis of rotation.  For torsional
oscillation about the vertical axis, it is designated as Ιθ;
whereas for rocking oscillation, it is Ιψ, (for rotation about
the axis through a diameter of the base of the
foundation).  If the foundation is considered to be a right
circular cylinder of radius ro, height h, and unit weight y,
expressions for the mass and mass moments of inertia
are as follow:

π ro
2 h y

m = g (17-6)

π ro
4 h y

Is = 2g (17-7)

πro
2hy r0

2 + h2 (17-8)
Ιψ= g 4 3

(2) Theoretical solutions describe the
motion magnification factors M, or ML, for example, in
terms of a "mass ratio" Bz and a dimensionless
frequency factor ao  Table 17-1 lists the mass ratios,
damping ratios, and spring constants corresponding to
vibrations of

the rigid circular footing resting on the surface of an
elastic semi-infinite body for each of the modes of
vibration.  Introduce these quantities into equations given
in paragraph 17-2 to compute resonant frequencies and
amplitudes of dynamic motions.  The dimensionless
frequency, ao, for all modes of vibration is given as
follows:

2πforo  p (17-9)
ao = Vs = ωro     G

The shear velocity, Vs, in the soil is discussed in
paragraph 17-5.

(3) Figure 17-4 shows the variation of the
damping ratio, D, with the mass ratio, B, for the four
modes of vibration.  Note that D is significantly lower for
the rocking mode than for the vertical or horizontal
translational modes.  Using the expression M = 1/(2D)
for the amplitude magnification factor and the
appropriate D, from figure 17-4, it is obvious that M, can
become large.  For example, if Bψ = 3, then Dψ = 0.02
and Mψ = 1/(2 x 0.02) = 25.

Table 17-1.  Mass ratio, Damping Ration, and Spring Constant for Rigid Circular Footing on the Semi-Infinite Elastic Body

U. S. Army Corps of Engineers

)(
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(Courtesy of F. E. Richart, Jr. J. R. Hall, Jr., and R. D.
Woods, Vibrations of Soils and Foundations, 1970. p
226. Reprinted by permission of Prentice-Hall, Inc.,
Englewood Cliffs, N. J.)

Figure 17-4.  Equivalent damping ratio for oscillation of
rigid circular footing on elastic half-space.

b. Effects of shape of foundation.  The
theoretical solutions described above treated a rigid
foundation with a circular contact surface bearing against
the elastic half-space.  However, foundations are usually
rectangular in plan.  Rectangular footings may be
converted into an equivalent circular footing having a
radius ro determined by the following expressions:

For translation in z- or x-directions:
ro =     4cd (17-10)

    π
For rocking:

ro =4    16cd3 (17-11)
3n

For torsion:
ro =4  16cd(c2 + d2) (17-12)

6π
In equations (17-10), (17-11), and (17-12), 2c is the
width of the rectangular foundation (along the axis of
rotation for rocking), and 2d is the length of the
foundation (in the plane of rotation for rocking).  Two
values of ro are obtained for rocking about both x and y
axes.

c. Computations. Figure 17-5 presents
examples of computations for vertical motions (Example
1) and rocking motions (Example 2).

d. Effect of embedment.  Embedment of
foundations a distance d below the soil surface may
modify the dynamic response, depending upon the soil-
foundation contact and the magnitude of d.  If the soil
shrinks away from the vertical faces of the embedded
foundation, no beneficial effects of embedment may
occur.  If the basic evaluation of foundation response is
based on a rigid circular footing (of radius ro) at the
surface, the effects of embedment will cause an increase

in resonant frequency and a decrease in amplitude of
motion.  These changes are a function of the type of
motion and the embedment ratio d/ro.

(1) For vertical vibrations, both analytical
and experimental results indicate an increase in the
static spring constant with an increase in embedment
depth. Embedment of the circular footing a distance d/ro

< 1.0 produces an increase in the embedded spring
constant kzd’ which is greater than kz (table 17-1) by kzd/kz

≅ (1 + 0.6 d/ro).  An increase in damping also occurs, i.e.,
Dzd/Dz (1 + 0.6 d/ro).  These two approximate relations
lead to an estimate of the reduction in amplitude of
motion because of embedment from Azd / Az = 1 / Dzd / Dz

x kzd/kz).  This amount of amplitude reduction requires
complete soil adhesion at the vertical face, and test data
have often indicated less effect of embedment.  Test
data indicate that the resonant frequency may be
increased by a factor up to (1 + 0.25 d/ro) because of
embedment.

(2) The influence of embedment on
coupled rocking and sliding vibrations depends on the
ratio Bω/Bx (table 17-1).  For Bω/Bx ≅ 3.0, the increase in
natural frequency due to embedment may be as much as
(1 + 0.5 d/ro).  The decrease in amplitude is stongly
dependent upon the soil contact along the vertical face of
the foundation, and each case should be evaluated on
the basis of local soil and construction conditions.

e. Effect of finite thickness of elastic layer.
Deposits of real soils are seldom homogeneous to
significant depths; thus theoretical results based on the
response of a semi-infinite elastic media must be used
with caution.  When soil layers are relatively thin, with
respect to foundation dimensions, modifications to the
theoretical half-space analyses must be included.

(1) Generally, the effect of a rigid layer
underlying a single elastic layer of thickness, H, is to
reduce the effective damping for a foundation vibrating at
the upper surface of the elastic layer.  This condition
results from the reflection of wave energy from the rigid
base back to the foundation and to the elastic medium
surrounding the foundation.  For vertical or torsional
vibrations or a rigid circular foundation resting on the
surface of the elastic layer, it has been established that a
very large amplitude of resonant vibrations can occur if

Vs

> 4H(17-13)
fo

In equation (17-13), V, is the shear wave velocity in the
elastic layer and fo is the frequency of footing vibrations.
When the conditions of equation (17-4) occur, the natural
frequency (equation (17-1)) becomes the important
design criterion because at that frequen-
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U. S. Army Corps of Engineers

Figure 17-5.  Examples of computations for vertical and rocking motions.

17-6



TM 5-818-1 / AFM 88-3, Chap. 7

cy excessive dynamic motion will occur.  To restrict the
dynamic oscillation to slightly larger than the static
displacement, the operating frequency should be
maintained at one half, or less, of the natural frequency
(fig 17-2).

(2) The relative thickness (expressed by
H/ro) also exerts an important influence on foundation
response. If H/ro is greater than about 8, the foundation
on the elastic layer will have a dynamic response
comparable to that for a foundation on the elastic half-
space.  For H/ro < 8, geometrical damping is reduced,
and the effective spring constant is increased.  The
values of spring constant, k, in table 17-1 are taken as
reference values, and table 17-2 indicates the increase
in spring constant associated with a decrease in
thickness of the elastic layer.  Values of the increase in
spring constants for sliding and for rocking modes of
vibration will tend to fall between those given for vertical
and torsion for comparable H/ro conditions.

f. Coupled modes of vibration.  In general,
vertical and torsional vibrations can occur independently
without causing rocking or sliding motions of the
foundation.  To accomplish these uncoupled vibrations,
the line of action of the vertical force must pass through
the center of gravity of the mass and the resultant soil
reaction, and the exciting torque and soil reaction torque
must be symmetrical about the vertical axis of rotation.
Also, the center of gravity of the foundation must lie on
the vertical axis of torsion.

(1) When horizontal or overturning
moments act on a block foundation, both horizontal
(sliding) and rocking vibrations occur.  The coupling
between these motions depends on the height of the
center of gravity of.  the machine-foundation about the
resultant soil reaction.  Details of a coupled rocking and
sliding analysis are given in the example in figure 17-6.

(2) A "lower bound" estimate of the first
mode of coupled rocking and sliding vibrations can be
obtained from the following:

1 = 1 + 1 (17-14)
fo

2 fx
2 +fψ

2

In equation (17-14), the resonant frequencies in the
sliding x and rocking ψ motions can be determined by

introducing values from table 17-1 into equations (17-1)
and (17-5).  (Note that equation (17-14) becomes less
useful when Dx is greater than about 0.15). The first
mode resonant frequency is usually most important from
a design standpoint.

g. Examples.  Figure 17-5, Example 1,
illustrates a procedure for design of a foundation to
support machine-producing vertical excitations.  Figure
17-5, Example 2, describes the analysis of uncoupled
horizontal and rocking motion for a particular foundation
subjected to horizontal excitations.  The design
procedure of Example 1 is essentially an iterative
analysis after approximate dimensions of the foundation
have been established to restrict the static deflection to a
value comparable to the design criterion.

(1) In figure 17-5, Example 1 shows that
relatively high values of damping ratio D are developed
for the vertical motion of the foundation, and Example 2
illustrates that the high damping restricts dynamic mo-
tions to values slightly larger than static displacement
caused by the same force.  For Example 2, establishing
the static displacement at about the design limit value
leads to satisfactory geometry of the foundation.

(2) Example 2 (fig 17-5) gives the
foundation geometry, as well as the analysis needed to
ascertain whether the design criterion is met.  It is
assumed that the 400-pound horizontal force is constant
at all frequencies and that a simple superposition of the
singledegree-of-freedom solutions for horizontal
translation and rocking will be satisfactory.  Because the
horizontal displacement is negligible, the rocking motion
dominates, with the angular rotation at resonance
amounting to (Mψ x ψs) or Aψ = 5.6 x 0.51 x 10-6 = 2.85 x
10-6 radians.  By converting this motion to horizontal
displacement at the machine center line, it is found that
the design conditions are met.

(3) In figure 17-6, the foundation of
Example 2 (fig.  17-5) is analyzed as a coupled system
including both rocking and sliding.  The response curve
for angular rotation shows a peak motion of Aψ = 2.67 x
10-6 radians, which is comparable to the value found by
considering rocking alone.  The coupled dynamic
response of any rigid foundation, e.g., a radar tower, can

Table 17-2.  Values of kL/L for Elastic Layer (k from Table 17-1)

H/ro 0.5 1.0 2.0 4.0 8.0 ∞

Vertical 5.0 2.2 1.47 1.23 1.10 1.0

Torsion -- 1.07 1.02 1.009 -- 1.0

U. S. Army Corps of Engineers
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U. S. Army Corps of Engineers

Figure 17-6.  Coupled rocking and sliding motion of foundation.
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be evaluated by the procedure illustrated in figure 17-6.

17-4. Wave transmission, attenuation,  and
isolation.  Vibrations are transmitted through soils by
stress waves.  For most engineering analyses,  the soil
may be treated as an ideal homogeneous, isotropic
elastic material to determine the characteristics of the
stress waves.

a. Half-space.  Two types of body waves may
be transmitted in an ideal half-space, compression (P-)
waves and shear (S-) waves; at the surface of the
halfspace, a third wave known as the Rayleigh (R-) wave
or surface wave will be transmitted.  The characteristics
that distinguish these three waves are velocity, wavefront
geometry, radiation damping, and particle motion.
Figure 17-7 shows the characteristics of these waves as
they are generated by a circular footing undergoing
vertical vibration on the surface of an ideal half-space
with is µ = 0.25.  The distance from the footing to each
wave in figure 17-7 is drawn in proportion to the velocity
of each wave.  The wave velocities can be computed
from the following:
ρ

P-wave velocity:
vc=  λ+2G (17-15)

  p
S-wave velocity:

vs = G (17-16)
p

R-wave velocity:
vR = Kvs (17-17)

where
λ = 2µG and G are Lame’s E

1-2µ constants; G =2(1 + j)
p = y/G= mass density of soil
y = moist or saturated unit weight
K = constant, depending on Poisson’s ratio

0.87 < K < 0.98 for 0 <_< 0.5
(1) The P- and S-waves propagate radially

outward from the source along hemispherical wave
fronts, while the R-wave propagates outward along a
cylindrical wave front.  All waves encounter an
increasingly larger volume of material as they travel
outward,  thus decreasing in energy density with
distance.  This decrease in energy density and its
accompanying decrease in displacement amplitude is
called geometrical damping or radiation damping.

(2) The particle motions are as follows: for
the P-wave, a push-pull motion in the radial direction; for
the S-wave, a transverse motion normal to the radial
direction; and for the R-wave, a complex motion,  which
varies with depth and which occurs in a vertical plane
containing a radius.  At the surface, R-wave particle
motion describes a retrograde ellipse.  The shaded
zones along the wave fronts in figure 17-7 represent the

relative particle amplitude as a function of inclination
from vertical.

b. Layered media.
(1) In a layered medium, the energy

transmitted by a body wave splits into four waves at the
interface between layers.  Two waves are reflected back
into the first medium, and two waves are transmitted or
refracted into the second medium.  The amplitudes and
directions of all waves can be evaluated if the properties
of both media and the incident angle are known.  If a
layer containing a lower modulus overlies a layer with a
higher modulus within the half-space, another surface
wave, known as a Love wave, will occur.  This wave is a
horizontally oriented S-wave whose velocity is between
the S-wave velocity of the layer and of the underlying
medium.

(2) The decay or attenuation of stress
waves occurs for two reasons: geometric or radiation
damping, and material or hysteretic damping.  An
equation including both types of damping is the following:

A2 = A1 r1 C exp[-α (r2 - r1 )] (17-18)
r2

where
A2 = desired amplitude at distance r2
A, = known or measured amplitude at

radial distance r, from vibration
 source

C = constant, whichdescribes
geometrical damping

= 1 for body (P- or S-) waves
= 0.5 for surface or R-waves

α = coefficient of attenuation, which
describes material damping (values
in table 17-3)

c. Isolation.  The isolation of certain structures
or zones from the effects of vibration may sometimes be
necessary.  In some instances, isolation can be
accomplished by locating the site at a large distance
from the vibration source.  The required distance, r2, is
calculated.from equation (17-18).  In other situations,
isolation may be accomplished by wave barriers.  The
most effective barriers are open or void zones like
trenches or rows of cylindrical holes.  Somewhat less
effective barriers are solid or fluid-filled trenches or
holes.  An effective barrier must be proportioned so that
its depth is at least two-thirds the wavelength of the
incoming wave.  The thickness of the barrier in the
direction of wave travel can be as thin as practical for
construction considerations.  The length of the barrier
perpendicular to the direction of wave travel will depend
upon the size of the zone to be isolated but should be no
shorter than two times the maximum plan dimension of
the structure or one wavelength, whichever is greater.
17-5. Evaluation of S-wave velocity In soils.  The
key parameter in a dynamic analysis of a
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(Courtesy of F. E. Richart, Jr., J. R. Hall, Jr., and R. D. Woods.
Vibrations of Soils and Foundations, 1970, p 91.  Reprinted by
permission of Prentice-Hall, Inc., Englewood Cliffs, N. J.)

Figure 17-7.  Distribution of displacement waves from a circular footing on the elastic half-space.

soil-foundation system is the shear modulus, G.  The
shear modulus can be determined in the laboratory or
estimated by empirical equations.  The value of G can
also be computed by the field-measured S-wave velocity
and equation (17-16).

a. Modulus at low strain levels.  The shear
modulus and damping for machine vibration problems
correspond to low shear-strain amplitudes of the order of
1 to 3 x 10-4 percent.  These properties may be
determined from field measurements of the seismic

wave velocity through soil or from special cyclic
laboratory tests.

b. Field wave velocity tests.  S-wave velocity
tests are preferably made in the field.  Measurements
are obtained by inducing a low-level seismic excitation at
one location and measuring directly the time required for
the induced S-wave to travel between the excitation and
pickup unit.  Common tests, such as uphole, downhole,
or crosshole propagation, are described in geotechnical
engineering literature.

Table 17-3.  Attenuation Coefficients for Earth Materials

Materials a (1/ft) @ 50 HZa

Sand Loose, fine 0.06
Dense, fine 0.02

Clay Silty (loess) 0.06
Dense, dry 0.003

Rock Weathered volcanic 0.02
Competent marble 0.00004

a α is a function of frequency.  For other frequencies, f, compute αf = (f/50) x α50

U. S. Army Corps of Engineers
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(1) A problem in using seismic methods to
obtain elastic properties is that any induced elastic pulse
(blast, impact, etc.) develops three wave types previously
discussed, i.e., P-, S-, and R-waves.  Because the
velocity of all seismic waves is hundreds of feet per
second and the pickup unit detects all three wave pulses
plus any random noise, considerable expertise is
required to differentiate between the time of arrival of the
wave of interest and the other waves.  The R-wave is
usually easier to identify (being slower, it arrives last;
traveling near the surface, it contains more relative
energy).  Because R- and S-wave velocities are relatively
close, the velocity of the R-wave is frequently used in
computations for elastic properties.

(2) Because amplitudes in seismic survey
are very small, the computed shear and Young’s moduli
are considerably larger than those obtained from
conventional laboratory compression tests.

(3) The shear modulus, G, may be
calculated from the S- (approximately the R-wave) wave
velocity as follows:

G = ρVs
2 (17-19)

where
ρ = y/32.2 = mass density of soil using

wet or total unit weight
Vs = S-wave velocity (or R-wave), feet per

second
This equation is independent of Poisson’s ratio.  The Vs

value is taken as representative to a depth of
approximately one-half wavelength.  Alternatively, the
shear modulus can be computed from the P-wave
velocity and Poisson’s ratio from:

G = p( 1 - 2µ)Vp
2 (17-20)

2(1- µ)
The use of this equation is somewhat limited because
the velocity of a P-wave in water is approximately 5000
feet per second (approximately the velocity in many
soils) and Poisson’s ratio must be estimated.  For
saturated or near saturated soils, µ - 0.5.  The theoretical
variation of the ratio Vs/Vp with µ is shown in figure 17-8.

U. S. Army Corps of Engineers

Figure 17-8.  Theoretical relation between shear velocity ratio Vp/Vs and Poisson’s ratio.
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c. Laboratory measurement of dynamic
stress-strain properties.  Low shear-strain amplitude, i.e.
less than 10-2 percent, shear modulus data may be
obtained from laboratory tests and usually involve
applying some type of high-frequency forced vibration to
a cylindrical sample of soil and measuring an appropriate
response.  Some types of tests allow the intensity level of
the forced vibration to be varied, thus yielding moduli at
different shear strains.

(1) High strain-level excitation, i.e. 0.01 to
1.0 percent, may be achieved by low-frequency, cyclic
loading triaxial compression tests on soil samples.  The
modulus, damping, and strain level for a particular test
are calculated directly from the sample response data.
The usual assumption for calculating the modulus and
damping from forced cyclic loading tests on laboratory
samples is that at any cyclic strain amplitude the soil
behaves as a linear elastic, viscous,  damped material.
A typical set of results may take the form of a hysteresis
loop as shown in figure 17-9. Either shear or normal
stress cyclic excitation may be used.  The shear modulus
is calculated from the slope of the peak-to-peak secant
line.  The damping is computed from the area of the

hysteresis loop, and the strain level is taken as the
single-amplitude (one-half the peak-to-peak amplitude or
origin to peak value) cyclic strain for the condition during
that cycle of the test. Note that the equations for modulus
and damping shown in figure 17-9 assume the soil
behaves as an equivalent elastic viscous, dampened
material, which is linear within the range of strain
amplitude specified.  This assumption is usually made in
most soil dynamics analyses because of the low-
vibration amplitudes involved.  If the cyclic hysteresis
loops are obtained from triaxial test specimens, the
resulting modulus will be the stress-strain modulus, E.  If
the tests involve simple shear or torsion shear such that
shear stresses and strains are measured, the resulting
modulus will be the shear modulus, G.  In either case,
the same equations apply.

(2) The shear modulus, G, can be
computed from the stress strain modulus and Poisson’s
ratio as follows:

G = E (17-21)
2(1+µ)

U. S. Army Corps of Engineers

Figure 17-9.  Idealized cyclic stress-strain loop for soil.
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The shear strain amplitude, AΕ, may be computed from
the axial strain amplitude, Ε,and Poisson’s ratio as
follows:

AΕ = Ε(1 + µ) (17-22)
For the special case of saturated soils, Poisson’s ratio is
0.5, which leads to the following:

G = E/3
AΕ = 1.5Ε

d. Correlations.
(1) Empirical correlations from many sets

of data have provided several approximate methods for
estimating the S-wave velocity and shear modulus for
soils corresponding to low-strain excitation.  For many
undisturbed cohesive soils and sands:
G =1230(21973 - e)2

 (OCR)" (o)0.5 (pounds 1 + per
square inch) (17-23)

where
e = void ratio
η = empirical constant, which depends on

the PI of cohesive soils (table 17-4).  For sands, PI = 0
and η = 0, so OCR term reduces to 1.0.  For clays, the
maximum value is η = 0.5 for PI > 100.

σ0 = 1/3 (σ1 + σ2 + σ3) = mean normal
effective stress, pounds per square inch

(2) For sands and gravels, calculate the
low-strain shear modulus as follows:
G = 1000(K2)(σ0)

0.5 (pounds per square foot) (17-24)
where

K2 =empirical constant (table 17-5)
=90 to 190 for dense sand, gravel, and cobbles

with little clay
σ0 = mean normal effective stress as in equation

(17-23) (but in units of pounds per square foot)

(3) For cohesive soils as clays and peat,
the shear modulus is related to Su as follows:

G = K2su (17-25)
For clays, K2 ranges from 1500 to 3000.  For peats, K2

ranges from 150 to 160 (limited data base).
(4) In the laboratory, the shear modulus of

soil increases with time even when all other variables are
held constant.  The rate of increase in the shear modulus
is approximately linear as a function of the log of time
after an initial period of about 1000 minutes.  The change
in shear modulus, ∆G, divided by the shear modulus at
1000 minutes, G1000, is called the normalized secondary
increase.  The normalized secondary increases range
from nearly zero percent per log cycle for coarse sands
to more than 20 percent per log for sensitive clays.  For
good correlation between laboratory and field
measurements of shear modulus, the age of the in situ
deposit must be considered, and a secondary time
correction applies to the laboratory data.

e. Damping in low strain levels.  Critical
damping is defined as

cc = 2 √km (17-26)
where k is the spring constant of vibrating mass and m
represents mass undergoing vibration (W/g).  Viscous
damping of all soils at low strain-level excitation is
generally less than about 0.01 percent of critical damping
for most soils or:

D = c/c, < 0.05 (17-27)
It is important to note that this equation refers only to
material damping, and not to energy loss by radiation
away from a vibrating foundation, which may also be
conveniently expressed in terms of equivalent viscous
damping.  Radiation damping in machine vibration
problems is a function of the geometry of the problem
rather than of the physical properties of the soil.

Table 17-4.  Values of Constant r Used with Equation (17-23) to Estimate Cyclic Shear Modulus at Low Strains

Plasticity Index  K
0 0
20 0.18
40 0.30
60 0.41
80 0.48
>100 0.50

(Courtesy of 0.  Hardin and P.  Drnevich.  "Shear
Modulus and Damping in Soils: Design Equations and
Curves," Journal., Soil Mechanics and Foundations
Division. Vol 98. No. SM7. 1972, pp 667-692.  Reprinted
by permission of American Society of Civil Engineers,
New York.)
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Table 17-5.  Values of Constant K2 Used with Equation (17-24) to Estimate Cyclic Shear Modulus at Low Strains for Sands

e K2 Dr(%)
0.4 70 90
0.5 60 75
0.6 51 60
0.7 45 45
0.8 39 40
0.9 33 30

(Courtesy of H.  B.  Seed and L M. Idriss, "Simplified Procedures for
Evaluating Liquefaction Potential," Journal, Soil Mechanics and
Foundations Division Vol 97, No. SM9. 1971, pp 1249-1273. Reprinted by
permission of American Society of Civil Engineers, New York.)

f. Modulus and damping at high strain levels.
The effect of increasingly higher strain levels is to reduce
the modulus (fig 17-10) and increase the damping of the
soil (fig 17-11).  Shear modulus and damping values at
high strains are used mainly in computer programs for
analyzing the seismic response of soil under earthquake
loading conditions.  The various empirical relations for
modulus and damping pertain to sands and soft,
normally consolidated clays at low-to-medium effective
confining pressures, in the range of about 100 feet or
overburden.  Stiff overconsolidated clays and all soils at
high effective confining pressure exhibit lower values of
damping and higher values of modulus, especially at
high strain levels.  As a maximum, the modulus and
damping values for stiff or strong soils at very high
effective confining pressures correspond to values
pertaining to crystalline or shale-type rock.

17-6. Settlement and liquefaction.
a. Settlement.  Repeated shearing strains of

cohesionless soils cause particle rearrangements.
When the particles move into a more compact position,
settlement occurs.  The amount of settlement depends
on the initial density of the soil, the thickness of the
stratum, and the intensity and number of repetitions of
the shearing strains.  Generally, cohesionless soils with
relative densities (Dr) greater than about 75 percent
should not develop settlements.  However, under 106 or
107 repetitions of dynamic loading, even dense sands
may develop settlements amounting to 1 to 2 percent of
the layer thickness.  To minimize settlements that might
occur under sustained dynamic loadings, the soil
beneath and around the foundation may be
precompacted during the construction process by
vibroflotation, multiple blasting, pile driving, or vibrating
rollers acting at the surface.  The idea is to subject the
soil to a more severe dynamic loading condition during

construction than it will sustain throughout the design
operation.

b. Liquefaction of sands.  The shearing
strength of saturated cohesionless soils depends upon
the effective stress acting between particles.  When
external forces cause the pore volume of a cohesionless
soil to reduce the amount V, pore water pressures are
increased during the time required to drain a volume V of
water from the soil element.  Consequently, pore
pressure increases depend upon the time rate of change
in pore volume and the drainage conditions (permeability
and available drainage paths).  When conditions permit
the pore pressure, u, to build up to a value equal to the
total stress, σn, on the failure plane, the shear strength is
reduced to near zero and the mixture of soil grains and
water behaves as a liquid.  This condition is true
liquefaction, in which the soil has little or no shearing
strength and will flow as a liquid.  Liquefaction or flow
failure of sands involves a substantial loss of shearing
strength for a sufficient length of time that large de-
formations of soil masses occur by flow as a heavy
liquid.

c. Liquefaction due to seismic activity.  Soil
deposits that have a history of serious liquefaction
problems during earthquakes include alluvial sand,
aeolian sands and silts, beach sands, reclaimed land,
and hydraulic fills.  During initial field investigations,
observations that suggest possible liquefaction problems
in seismic areas include low penetration resistance;
artesian heads or excess pore pressures; persistent
inability to retain granular soils in sampling tubes; and
any clean, fine, uniform sand below the groundwater
table.  The liquefaction potential of such soils for
structures in seismic areas should be addressed unless
they meet one of the criteria in table 17-6.  In the event
that
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(Courtesy of H.  B.  Seed and L M. Idriss, "Simplified Procedures for
Evaluating Liquefaction Potential," Journal, Soil Mechanics and
Foundations Division Vol 97, No.  SM9. 1971, pp 1249-1273. Reprinted
by permission of American Society of Civil Engineers, New York.)

Figure 17-10.  Variation of shear modulus with cyclic strain amplitude; Gmax = G at Ε = 1 to 3 x 10-4 percent; scatter in data
up to about ± 0.1 on vertical scale.
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(Courtesy of H.  B Seed and 1.  M Idrisv.  "Simplified
Procedure for Evaluating Soil Liquefaction Potential."
Journal, Soul Mechanics and Foundations Division.  Vol
97, No.  SM9.  1971, pp 1249-1273.  Reprinted by
permission of the American Society, of Civil Engineers.
Newt York.)

Figure 17-11.  Variation of viscous damping with cyclic strain amplitude, data scatter up to about ±50 percent of average
dumping values shown for any strain.
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Table 17-6.  Criteria for Excluding Need for Detailed Liquefaction Analyses

1. CL, CH, SC, or GC soils.
2. GW or GP soils or materials consisting of cobbles, boulders, uniform rock fill, which have free-draining

boundaries that are large enough to preclude the development of excess pore pressures.
3. SP, SW, or SM soils which have average relative density equal to or greater than 85 percent, provided that

the minimum relative density is not less than 80 percent.
4. ML or SM soils in which the dry density is equal to or greater than 95 percent of the modified Proctor (CE 55)

density.
5. Soils of pre-Holocene age, with natural overconsolidation ratio equal to or greater than 16 and with relative

density greater than 70 percent.
6. Soils located above the highest potential groundwater table.
7. Sands in which the "N" value is greater than three times the depth in feet, or greater than 75; provided that 75

percent of the values meet this criterion, that the minimum "N" value is not less than one times the depth in feet, that there
are no consistent patterns of low values in definable zones or layers, and that the maximum particle size is not greater
than 1 in.  Large gravel particles may affect "N" values so that the results of the SPT are not reliable.

8. Soils in which the shear wave velocity is equal to or greater than 2000 fps.  Geophysical survey data and site
geology should be reviewed in detail to verify that the possibility of included zones of low velocity is precluded.

9. Soils that, in undrained cyclic triaxial tests, under isotropically consolidated, stress-controlled conditions, and
with cyclic stress ratios equal to or greater than 0.45, reach 50 cycles or more with peak-to-peak cyclic strains not greater
than 5 percent; provided that methods of specimen preparation and testing conform to specified guidelines.

Note: The criteria given above do not include a provision for exclusion of soils on the basis of grain-size distribution, and
in general, grain-size distribution alone cannot be used to conclude that soils will not liquefy.  Under adverse conditions
nonplastic soils with a very wide range of grain sizes may be subject to liquefaction.

U. S. Army Corps of Engineers
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none of the criteria is met and a more favorable site
cannot be located, the material in question should be
removed, remedial treatment applied as described in
chapter 16, or a detailed study and analysis should be
conducted to determine if liquefaction will occur.

Ground motions from earthquakes cause motions of
foundations by introducing forces at the foundation-soil
contact zone.  Methods for estimating ground motions
and their effects on the design of foundation elements
are discussed in TM 5-809-10 / AFM 88-3, Chapter 13.

17-7. Seismic effects on foundations.
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